markus99@lemmy.world to Linux Gaming@lemmy.worldEnglish · 11 months agoLinux hits 4% on the desktop 🐧📈gs.statcounter.comexternal-linkmessage-square116fedilinkarrow-up1510arrow-down10cross-posted to: technology@lemmit.onlinelinux@programming.devtechnology@lemmy.worldtechnology@lemmy.mllinux_gaming@lemmy.worldlinux_gaming@lemmy.mllinux@lemmy.mllinux@lemmy.mllinuxfurs@pawb.social
arrow-up1510arrow-down1external-linkLinux hits 4% on the desktop 🐧📈gs.statcounter.commarkus99@lemmy.world to Linux Gaming@lemmy.worldEnglish · 11 months agomessage-square116fedilinkcross-posted to: technology@lemmit.onlinelinux@programming.devtechnology@lemmy.worldtechnology@lemmy.mllinux_gaming@lemmy.worldlinux_gaming@lemmy.mllinux@lemmy.mllinux@lemmy.mllinuxfurs@pawb.social
minus-squareTropicalDingdong@lemmy.worldlinkfedilinkEnglisharrow-up2arrow-down1·edit-211 months agoOk, fine, I’ll do the actual curve fitting instead of just estimating. Eyeballing it, were saying 1% in 2013, 2% in 2021, 3% in 2023? Gives us a fit of… 0.873 * exp(0.118 * x) So… Correct the equation and solve for x x_target = np.log(200 / a) / b Calculate the actual year year_target = 2013 + x_target print(year_target) In ~2058 everyone will be using two linux desktops at once.
minus-squareColeSloth@discuss.tchncs.delinkfedilinkEnglisharrow-up2·11 months agoIf you don’t think of the increase in speed of new users as continuing to increase exponentially.
minus-squareTropicalDingdong@lemmy.worldlinkfedilinkEnglisharrow-up2arrow-down1·11 months agoIsn’t that the point of the exponent in the exponential function?
Ok, fine, I’ll do the actual curve fitting instead of just estimating.
Eyeballing it, were saying 1% in 2013, 2% in 2021, 3% in 2023?
Gives us a fit of…
0.873 * exp(0.118 * x)
So…
Correct the equation and solve for x
x_target = np.log(200 / a) / b
Calculate the actual year
year_target = 2013 + x_target
print(year_target)
In ~2058 everyone will be using two linux desktops at once.
If you don’t think of the increase in speed of new users as continuing to increase exponentially.
Isn’t that the point of the exponent in the exponential function?