The military coup in Niger has raised concerns about uranium mining in the country by the French group Orano, and the consequences for France's energy independence.
@Ardubal@MattMastodon@BrianSmith950@Pampa@AlexisFR@Wirrvogel@Sodis Interconnectors make the “long term no wind in winter” scenario much less likely, though obviously this varies depending on the country; there’s less opportunity for it in Australia, but on the other hand it’s just much bigger - “long range” may be within the country.
As I understand it the Australian study was based on real world data.
But let’s say you’re right. After all the study accepted that 2% of the time it’s not sufficient. You have a few options for that last 2%. One is more nuclear - not necessarily 100% nuclear, or even 40% nuclear, but enough to prevent any freak weather events from causing serious harm. Another is hydrogen - an immature technology that is nonetheless 50+ years old.
There was a European study … I think I lost it on X though. That specifically made the case for hours not days. But to achieve that you have to over-build.
Really one of the biggest arguments for nuclear is that over-building renewables makes a minor problem with rare earths into something much more serious.
Most likely we need either some nuclear or some long-term storage. Long term storage means immature but clearly technically feasible technologies: hydrogen or iron-air, maybe a few other candidates. Against that you have the fact that with the exception of France in the 1980s, building large amounts of nuclear power quickly has almost never happened.
Nuclear just takes too long. So use it for what it is - a modest amount of baseload power at roughly twice the cost of renewables.
Let me see if I can find some of the sources … I already posted the study on Australia.
Here’s a Scottish one, they concluded that over-building renewables is feasible. Also arguing for some more hydro. Unfortunately hydro is generally considerably dirtier than nuclear.
Here’s the National Grid’s view; IIRC they are skeptical about the claim of 24GW of nuclear by 2050, but their models say it won’t be enough on its own anyway and bet on hydrogen.
Here are some of the numerous academic-ish sources, probably out of date. As I said, system models often assume there is infinite lithium, so doubtful IMHO.
That has 60% wind and 45% solar, with hours of storage, including some hydro, reaching 98%, using real world data (and scaling the output of existing plant). Going from 105% capacity to 170% eliminates the problem entirely - assuming no freak weather events not included in his ~ 1 year trace. Equally you could solve it with long-term storage. Long-term storage doesn’t have to be cheap or efficient per kWh; it’s the capital cost, the ecological cost (e.g. hydrogen leaks), and whether it’s feasible at all, that’s the real question.
If you don’t have nuclear equal to your *PEAK* demand, which looks unlikely on any reasonable timescale, then either you need quite a bit of storage, or you need to accept there will occasionally be power cuts for non-essential users.
We need to cut carbon emissions *NOW*. That might mean starting some new nuclear power projects. But both renewables and short term storage are being installed today, cheaply, and while there are some obstacles to this (e.g. grid access), balancing is not the main problem.
We can’t use nuclear as an excuse any more than we can carbon capture.
If you don’t have power output from storage equal to *PEAK* demand, it’s the same argument for any storage. And storage doesn’t /produce/ energy, it /consumes/ it (because of conversion losses, which are significant).
You seem to argue that our /current/ fossil grid would also need more storage, but it works just fine as is. Nuclear is better at load following than fossils, so what gives?
Nowadays we have diesel farms (eeek!), and increasingly (thankfully!) batteries.
The actual UK grid today is only 45% fossil fuel (and some nations and states are better than that). We also have more interconnectors than we had in the past.
UK nuclear has generally been used as baseload for many decades.
Yes, nuclear is mostly used as baseload because operation and fuel costs are the cheapest of all. Its big costs are almost entirely building it and of that, cost of finance.
So, it would be the most expensive to curtail.
(Another reason why Germany shutting down its perfectly fine nuclear power plants already supplying 30% of its electricity is pure insanity.)
@Ardubal@MattMastodon@BrianSmith950@Pampa@AlexisFR@Wirrvogel@Sodis Sadly it is much easier to build an extra 10GW of peak gas plant than it is to build an extra 10GW of nuclear plant. The tradeoff is of course that the gas plant is inefficient and therefore extremely expensive per unit generated (but not used very often). Not to mention destroying the planet.
But that is how we largely managed it in the past.
In the future, and even the present, fortunately we have better options.
Exactly. And I believe that it is »our« (or rather some hypothetical government’s) task to make the long-term cost show up already in short-term finance, so that it is /never/ cheaper to build a gas plant.
It’s not just the UK. Every third gen PWR has taken way longer than expected.
The public rightly insist on the safest designs possible. And those at least have been tried once (generally only once!). However, they take a long time.
@Ardubal @MattMastodon @BrianSmith950 @Pampa @AlexisFR @Wirrvogel @Sodis Interconnectors make the “long term no wind in winter” scenario much less likely, though obviously this varies depending on the country; there’s less opportunity for it in Australia, but on the other hand it’s just much bigger - “long range” may be within the country.
As I understand it the Australian study was based on real world data.
But let’s say you’re right. After all the study accepted that 2% of the time it’s not sufficient. You have a few options for that last 2%. One is more nuclear - not necessarily 100% nuclear, or even 40% nuclear, but enough to prevent any freak weather events from causing serious harm. Another is hydrogen - an immature technology that is nonetheless 50+ years old.
There was a European study … I think I lost it on X though. That specifically made the case for hours not days. But to achieve that you have to over-build.
Really one of the biggest arguments for nuclear is that over-building renewables makes a minor problem with rare earths into something much more serious.
Most likely we need either some nuclear or some long-term storage. Long term storage means immature but clearly technically feasible technologies: hydrogen or iron-air, maybe a few other candidates. Against that you have the fact that with the exception of France in the 1980s, building large amounts of nuclear power quickly has almost never happened.
Nuclear just takes too long. So use it for what it is - a modest amount of baseload power at roughly twice the cost of renewables.
Let me see if I can find some of the sources … I already posted the study on Australia.
Here’s a Scottish one, they concluded that over-building renewables is feasible. Also arguing for some more hydro. Unfortunately hydro is generally considerably dirtier than nuclear.
https://scottishscientist.wordpress.com/2015/04/03/scientific-computer-modelling-of-wind-pumped-storage-hydro/
http://re100.scienceontheweb.net/
https://scottishscientist.wordpress.com/2017/07/14/wind-storage-and-back-up-system-designer/
Here’s the National Grid’s view; IIRC they are skeptical about the claim of 24GW of nuclear by 2050, but their models say it won’t be enough on its own anyway and bet on hydrogen.
https://www.nationalgrideso.com/document/263951/download
Here are some of the numerous academic-ish sources, probably out of date. As I said, system models often assume there is infinite lithium, so doubtful IMHO.
https://web.stanford.edu/group/efmh/jacobson/Articles/I/145Country/22-145Countries.pdf
https://twitter.com/AukeHoekstra/status/1557466581185224704
https://www.helsinkitimes.fi/themes/themes/science-and-technology/22012-researchers-agree-the-world-can-reach-a-100-renewable-energy-system-by-or-before-2050.html#.YvPUxCrrWdI.twitter
https://ieeexplore.ieee.org/document/9837910
@Ardubal @MattMastodon @BrianSmith950 @Pampa @AlexisFR @Wirrvogel @Sodis It is well worth reading the original Australian model.
That has 60% wind and 45% solar, with hours of storage, including some hydro, reaching 98%, using real world data (and scaling the output of existing plant). Going from 105% capacity to 170% eliminates the problem entirely - assuming no freak weather events not included in his ~ 1 year trace. Equally you could solve it with long-term storage. Long-term storage doesn’t have to be cheap or efficient per kWh; it’s the capital cost, the ecological cost (e.g. hydrogen leaks), and whether it’s feasible at all, that’s the real question.
https://reneweconomy.com.au/a-near-100-per-cent-renewables-grid-is-well-within-reach-and-with-little-storage/
If you don’t have nuclear equal to your *PEAK* demand, which looks unlikely on any reasonable timescale, then either you need quite a bit of storage, or you need to accept there will occasionally be power cuts for non-essential users.
@Ardubal @MattMastodon @BrianSmith950 @Pampa @AlexisFR @Wirrvogel @Sodis But the fundamental thing for me is I won’t wait for new nuclear.
We need to cut carbon emissions *NOW*. That might mean starting some new nuclear power projects. But both renewables and short term storage are being installed today, cheaply, and while there are some obstacles to this (e.g. grid access), balancing is not the main problem.
We can’t use nuclear as an excuse any more than we can carbon capture.
@matthewtoad43 @MattMastodon @BrianSmith950 @Pampa @AlexisFR @Wirrvogel @Sodis
If you don’t have power output from storage equal to *PEAK* demand, it’s the same argument for any storage. And storage doesn’t /produce/ energy, it /consumes/ it (because of conversion losses, which are significant).
@Ardubal @MattMastodon @BrianSmith950 @Pampa @AlexisFR @Wirrvogel @Sodis Nuclear does not avoid the need for short-term storage to cover the peaks, unless you can build vast amounts of it (equal to peak).
Nuclear *does* avoid the need for long-term storage, if you can build enough of it (equal to average).
@matthewtoad43 @MattMastodon @BrianSmith950 @Pampa @AlexisFR @Wirrvogel @Sodis
You seem to argue that our /current/ fossil grid would also need more storage, but it works just fine as is. Nuclear is better at load following than fossils, so what gives?
@Ardubal @MattMastodon @BrianSmith950 @Pampa @AlexisFR @Wirrvogel @Sodis The fossil fuel grid we had 20 years ago relied on gas peak plants and hydro for peaks.
Nowadays we have diesel farms (eeek!), and increasingly (thankfully!) batteries.
The actual UK grid today is only 45% fossil fuel (and some nations and states are better than that). We also have more interconnectors than we had in the past.
UK nuclear has generally been used as baseload for many decades.
@matthewtoad43 @MattMastodon @BrianSmith950 @Pampa @AlexisFR @Wirrvogel @Sodis
Yes, nuclear is mostly used as baseload because operation and fuel costs are the cheapest of all. Its big costs are almost entirely building it and of that, cost of finance.
So, it would be the most expensive to curtail.
(Another reason why Germany shutting down its perfectly fine nuclear power plants already supplying 30% of its electricity is pure insanity.)
@Ardubal @MattMastodon @BrianSmith950 @Pampa @AlexisFR @Wirrvogel @Sodis Sadly it is much easier to build an extra 10GW of peak gas plant than it is to build an extra 10GW of nuclear plant. The tradeoff is of course that the gas plant is inefficient and therefore extremely expensive per unit generated (but not used very often). Not to mention destroying the planet.
But that is how we largely managed it in the past.
In the future, and even the present, fortunately we have better options.
@matthewtoad43 @MattMastodon @BrianSmith950 @Pampa @AlexisFR @Wirrvogel @Sodis
Exactly. And I believe that it is »our« (or rather some hypothetical government’s) task to make the long-term cost show up already in short-term finance, so that it is /never/ cheaper to build a gas plant.
@matthewtoad43 @MattMastodon @BrianSmith950 @Pampa @AlexisFR @Wirrvogel @Sodis
Ah, but historically, France is not an outlier. Here are the largest 10-year deployments of clean energy sources. The green ones are nuclear.
Nuclear doesn’t take long.
Here is an overview of historic build times.
The task is not fearing we might get a bad case, but creating an environment in which we get a good one.
@Ardubal @MattMastodon @BrianSmith950 @Pampa @AlexisFR @Wirrvogel @Sodis That graph includes some huge deployments of wind, and today, it’s a mature, cheap technology (though still improving). Same with solar.
On the timescale on which the historic installs occurred, that was not the case: nuclear and hydro were the only mature options.
@Ardubal @MattMastodon @BrianSmith950 @Pampa @AlexisFR @Wirrvogel @Sodis Can you name *one* nuclear project in the last 20 years in Europe that wasn’t severely over-budget and severely delayed?
It’s not just the UK. Every third gen PWR has taken way longer than expected.
The public rightly insist on the safest designs possible. And those at least have been tried once (generally only once!). However, they take a long time.