Summary
France’s Flamanville 3 nuclear reactor, its most powerful at 1,600 MW, was connected to the grid on December 21 after 17 years of construction plagued by delays and budget overruns.
The European Pressurized Reactor (EPR), designed to boost nuclear energy post-Chernobyl, is 12 years behind schedule and cost €13.2 billion, quadruple initial estimates.
President Macron hailed the launch as a key step for low-carbon energy and energy security.
Nuclear power, which supplies 60% of France’s electricity, is central to Macron’s plan for a “nuclear renaissance.”
Even if wind and solar make huge progress, they will likely never be as efficient regarding raw materials efficiency and land use. Land use is the main contributor to biodiversity loss.
I don’t think peremptory opinions about technologies are going to help. We should use what ever technology is the most reasonable and sustainable for each specific location.
Something to note about this chart is that ground-mount silicon solar PV isn’t considered for sharing land use with activities such as farming in comparison to how onshore wind is (i.e. agrivoltaics).
NREL in the US estimates that there are currently ~10.1 GW of agrivoltaics projects spread across ~62,400 acres (or ~7 m^2 / MW).
Even this being said, I think brownfield or existing structures for new PV is the way of the future for solar PV. There is so much real estate that could be used and has the potential to offset grid demand growth while providing greater reliability for consumers. You’ll need the big players to help with industrial loads, but even then, the growth of Virtual Power Plants (VPPs) has the potential to balance loads at the same scale as the big players for the prosumer market.
Edit: I’ll also make mention of floatovoltaics, or the installation of solar PV on bodies of water, either natural or artificial. This is a burgeoning side of the industry, but this is another area that could present net zero or even negative land use per unit of energy.
This is a poor argument. You just did what you explicitly should not do with Life Cycle Assessment (LCA) results.
The ISO 14044 specifically requires life cycle assessment to include all relevant impact categories. In particular in comparative analysis it is crucial to not single out any one category, but look at the impact on the endpoints, e.g. ecosystems or human health.
https://www.h2.de/fileadmin/user_upload/Einrichtungen/Hochschulbibliothek/Downloaddateien/DIN_EN_ISO_14044.pdf
See page 37 onwards.
Here is the full LCA study, that you drew only one category from
https://unece.org/sites/default/files/2022-04/LCA_3_FINAL March 2022.pdf
Look at the Endpoint indicators, like “Lifecycle impact on ecosystems, per MWh, in pointes”, “Life cycle impacts on ecosystems, no climate change,per MWh, in pointes”, “Life cycle impacts on human health,per MWh, in pointes” etc.
Nuclear power does fare well in these categories, but often only marginally different to Wind Power and Solar Power. It certainly does not offset the cost difference, when you also have to include the opportunity costs of running coal or gas plants longer.
This is a poor argument. You just did what you explicitly should not do when engaging in a discussion: building a straw man argument and cherry picking a part of an answer.
I highlighted two rarely mentioned and non-intuitive points about nuclear vs renewables, I bet a few readers learned about it. But, I didn’t say renewables shouldn’t be used. My conclusion says the opposite, don’t have blocked opinions about technologies, use whatever is most adapted to the location, if it’s renewable, that’s great.
Could you compare it to land used for livestock or car parks or low density housing?
If we went 100% solar is that even noticeable compared to mentioned above.
You just making excuses.
Could you not compare unrelated stuff? What you just did is called “whataboutism”.
Total land used for all power to be supplied by solar would be a hilariously tiny percentage of land, so this just reads like a solar version of “its killing birds” to me.
Agrivoltaics also side steps this non issue, as interlacing solar panels into farm land increases yields for many crops while making efficent use of space that’s already spoiled any biodiversity. Can you do that with a nuclear reactor?
Yeah in a perfect world based on some rough data you could supply the entire planet’s energy requirements with a solar plant about 300,000 square kilometers, or basically the size of Arizona, which translates to about 0.2% of the total landmass on earth. That being said, I’m curious what a solar plant the cost of this nuclear plant would look like, and where they’d put it. I think centralized vs distributed land rights and compensation is really tougher than the tech at this point.
Nevada just built a hybrid 1400MW solar/battery plant for 2 billion dollars in 2 years.
That 1400MW is solar panel + battery output, so it doesnt match nuclear’s steady state, but ive done the math on these projects before. We should be able to can build a 3000MW solar generating plant with 1200MW battery supply for 16hrs at roughly a cost of 17 Billion dollars, or 1 Vogtle nuclear plant. My time estimate was 6 years. This would output 2x the power of the Vogtle plant during the day, and output just as much as it over the night.
The above makes solar/battery not only way more productive than nuclear, but way safer, and way faster to built. All of that is just with demonstrated, everyday tech available today. It ignores all the huge advances being made in various batteries and panels. In the decade+ that it would take to open just one more reactor, we will likely be able to 2x-3x the power and speed to build at a lower cost with just solar/battery.
Nuclear was the right answer for the last 50 years. That’s no longer the case.