What concepts or facts do you know from math that is mind blowing, awesome, or simply fascinating?

Here are some I would like to share:

  • Gödel’s incompleteness theorems: There are some problems in math so difficult that it can never be solved no matter how much time you put into it.
  • Halting problem: It is impossible to write a program that can figure out whether or not any input program loops forever or finishes running. (Undecidablity)

The Busy Beaver function

Now this is the mind blowing one. What is the largest non-infinite number you know? Graham’s Number? TREE(3)? TREE(TREE(3))? This one will beat it easily.

  • The Busy Beaver function produces the fastest growing number that is theoretically possible. These numbers are so large we don’t even know if you can compute the function to get the value even with an infinitely powerful PC.
  • In fact, just the mere act of being able to compute the value would mean solving the hardest problems in mathematics.
  • Σ(1) = 1
  • Σ(4) = 13
  • Σ(6) > 101010101010101010101010101010 (10s are stacked on each other)
  • Σ(17) > Graham’s Number
  • Σ(27) If you can compute this function the Goldbach conjecture is false.
  • Σ(744) If you can compute this function the Riemann hypothesis is false.

Sources:

  • yewler@lemmygrad.ml
    link
    fedilink
    arrow-up
    4
    ·
    1 year ago

    That’s a really great question. The answer is that mathematicians keep their statements general when trying to prove things. Another commenter gave a bunch of examples as to different techniques a mathematician might use, but I think giving an example of a very simple general proof might make things more clear.

    Say we wanted to prove that an even number plus 1 is an odd number. This is a fact that we all intuitively know is true, but how do we know it’s true? We haven’t tested every single even number in existence to see that itself plus 1 is odd, so how do we know it is true for all even numbers in existence?

    The answer lies in the definitions for what is an even number and what is an odd number. We say that a number is even if it can be written in the form 2n, where n is some integer, and we say that a number is odd if it can be written as 2n+1. For any number in existence, we can tell if it’s even or odd by coming back to these formulas.

    So let’s say we have some even number. Because we know it’s even, we know we can write it as 2n, where n is an integer. Adding 1 to it gives 2n+1. This is, by definition, an odd number. Because we didn’t restrict at the beginning which even number we started with, we proved the fact for all even numbers, in one fell swoop.