Day 4: Ceres Search

Megathread guidelines

  • Keep top level comments as only solutions, if you want to say something other than a solution put it in a new post. (replies to comments can be whatever)
  • You can send code in code blocks by using three backticks, the code, and then three backticks or use something such as https://topaz.github.io/paste/ if you prefer sending it through a URL

FAQ

  • lwhjp@lemmy.sdf.org
    link
    fedilink
    arrow-up
    5
    ·
    2 months ago

    Haskell

    Popular language this year :)

    I got embarrassingly stuck on this one trying to be clever with list operations. Then I realized I should just use an array…

    import Data.Array.Unboxed (UArray)
    import Data.Array.Unboxed qualified as A
    import Data.Bifunctor
    
    readInput :: String -> UArray (Int, Int) Char
    readInput s =
      let rows = lines s
          n = length rows
       in A.listArray ((1, 1), (n, n)) $ concat rows
    
    s1 `eq` s2 = s1 == s2 || s1 == reverse s2
    
    part1 arr = length $ filter isXmas $ concatMap lines $ A.indices arr
      where
        isXmas ps = all (A.inRange $ A.bounds arr) ps && map (arr A.!) ps `eq` "XMAS"
        lines p = [take 4 $ iterate (bimap (+ di) (+ dj)) p | (di, dj) <- [(1, 0), (0, 1), (1, 1), (1, -1)]]
    
    part2 arr = length $ filter isXmas innerPoints
      where
        innerPoints =
          let ((i1, j1), (i2, j2)) = A.bounds arr
           in [(i, j) | i <- [i1 + 1 .. i2 - 1], j <- [j1 + 1 .. j2 - 1]]
        isXmas p = up p `eq` "MAS" && down p `eq` "MAS"
        up (i, j) = map (arr A.!) [(i + 1, j - 1), (i, j), (i - 1, j + 1)]
        down (i, j) = map (arr A.!) [(i - 1, j - 1), (i, j), (i + 1, j + 1)]
    
    main = do
      input <- readInput <$> readFile "input04"
      print $ part1 input
      print $ part2 input
    
  • janAkali@lemmy.one
    link
    fedilink
    English
    arrow-up
    4
    ·
    edit-2
    2 months ago

    Nim

    Could be done more elegantly, but I haven’t bothered yet.

    proc solve(input: string): AOCSolution[int, int] =
      var lines = input.splitLines()
    
      block p1:
        # horiz
        for line in lines:
          for i in 0..line.high-3:
            if line[i..i+3] in ["XMAS", "SAMX"]:
              inc result.part1
    
        for y in 0..lines.high-3:
          #vert
          for x in 0..lines[0].high:
            let word = collect(for y in y..y+3: lines[y][x])
            if word in [@"XMAS", @"SAMX"]:
              inc result.part1
    
          #diag \
          for x in 0..lines[0].high-3:
            let word = collect(for d in 0..3: lines[y+d][x+d])
            if word in [@"XMAS", @"SAMX"]:
              inc result.part1
    
          #diag /
          for x in 3..lines[0].high:
            let word = collect(for d in 0..3: lines[y+d][x-d])
            if word in [@"XMAS", @"SAMX"]:
              inc result.part1
    
      block p2:
        for y in 0..lines.high-2:
          for x in 0..lines[0].high-2:
            let diagNW = collect(for d in 0..2: lines[y+d][x+d])
            let diagNE = collect(for d in 0..2: lines[y+d][x+2-d])
            if diagNW in [@"MAS", @"SAM"] and diagNE in [@"MAS", @"SAM"]:
              inc result.part2
    

    Codeberg repo

  • mykl@lemmy.world
    link
    fedilink
    arrow-up
    4
    ·
    edit-2
    2 months ago

    Uiua

    Just part1 for now as I need to walk the dog :-)

    [edit] Part 2 now added, and a nicer approach than Part 1 in my opinion, if you’re able to keep that many dimensions straight in your head :-)

    [edit 2] Tightened it up a bit more.

    Grid ← ⊜∘⊸≠@\n "MMMSXXMASM\nMSAMXMSMSA\nAMXSXMAAMM\nMSAMASMSMX\nXMASAMXAMM\nXXAMMXXAMA\nSMSMSASXSS\nSAXAMASAAA\nMAMMMXMMMM\nMXMXAXMASX"
    
    ≡⍉⍉×⇡4¤[1_0 0_1 1_1 11]         # Use core dirs to build sets of 4-offsets.
    ↯∞_2⇡△ Grid                       # Get all possible starting points.
    &p/+♭⊞(+∩(≍"XMAS")⇌.⬚@.⊡:Grid≡+¤) # Part 1. Join the two into a table, use to pick 4-elements, check, count.
    
    Diags   ← [[¯. 1_1] [¯. 11]]
    BothMas ← /×≡(+∩(≍"MS")⇌.)⬚@.⊡≡+Diags¤¤ # True if both diags here are MAS.
    &p/+≡BothMas⊚="A"⟜¤Grid                 # Part 2. For all "A"s in grid, check diags, count where good.
    
      • mykl@lemmy.world
        link
        fedilink
        arrow-up
        2
        ·
        2 months ago

        The operators have all got ascii names you can type, and the formatter converts them to the symbols. It’s a bit odd but really worthwhile, as you get access to the powerful array handling functionality that made solving today’s challenges so much more straightforward than in other languages.

  • VegOwOtenks@lemmy.world
    link
    fedilink
    arrow-up
    4
    ·
    2 months ago

    I struggled a lot more when doing list slices that I would’ve liked to

    Haskell

    
    import Data.List qualified as List
    
    collectDiagonal :: [String] -> Int -> Int -> String
    collectDiagonal c y x
            | length c > y && length (c !! y) > x = c !! y !! x : collectDiagonal c (y+1) (x+1)
            | otherwise = []
    
    part1 c = do
            let forwardXMAS  = map (length . filter (List.isPrefixOf "XMAS") . List.tails) $ c
            let backwardXMAS = map (length . filter (List.isPrefixOf "XMAS") . List.tails . reverse) $ c
            let downwardXMAS  = map (length . filter (List.isPrefixOf "XMAS") . List.tails ) . List.transpose $ c
            let upwardXMAS = map (length . filter (List.isPrefixOf "XMAS") . List.tails . reverse ) . List.transpose $ c
            let leftSideDiagonals = map (\ y -> collectDiagonal c y 0) [0..length c]
            let leftTopDiagonals = map (\ x -> collectDiagonal c 0 x) [1..(length . List.head $ c)]
            let leftDiagonals = leftSideDiagonals ++ leftTopDiagonals
            let rightSideDiagonals = map (\ y -> collectDiagonal (map List.reverse c) y 0) [0..length c]
            let rightTopDiagonals = map (\ x -> collectDiagonal (map List.reverse c) 0 x) [1..(length . List.head $ c)]
            let rightDiagonals = rightSideDiagonals ++ rightTopDiagonals
            let diagonals = leftDiagonals ++ rightDiagonals
    
            let diagonalXMAS = map (length . filter (List.isPrefixOf "XMAS") . List.tails) $ diagonals
            let reverseDiagonalXMAS = map (length . filter (List.isPrefixOf "XMAS") . List.tails . reverse) $ diagonals
    
            print . sum $ [sum forwardXMAS, sum backwardXMAS, sum downwardXMAS, sum upwardXMAS, sum diagonalXMAS, sum reverseDiagonalXMAS]
            return ()
    
    getBlock h w c y x = map (take w . drop x) . take h . drop y $ c
    
    isXBlock b = do
            let diagonal1 = collectDiagonal b 0 0
            let diagonal2 = collectDiagonal (map List.reverse b) 0 0
    
            diagonal1 `elem` ["SAM", "MAS"] && diagonal2 `elem` ["SAM", "MAS"]
    
    part2 c = do
            
            let lineBlocks = List.map (getBlock 3 3 c) [0..length c - 1]
            let groupedBlocks = List.map (flip List.map [0..(length . head $ c) - 1]) lineBlocks
    
            print . sum . map (length . filter isXBlock) $ groupedBlocks
    
            return ()
    
    main = do
            c <- lines <$> getContents
    
            part1 c
            part2 c
    
            return ()
    
  • ystael@beehaw.org
    link
    fedilink
    arrow-up
    4
    ·
    edit-2
    2 months ago

    J

    Unsurprisingly this is the kind of problem that J is really good at. The dyadic case (table) of the adverb / is doing all the heavy lifting here: it makes a higher rank tensor by traversing items of the specified rank on each side and combining them according to the remaining frame of each side’s shape. The hard part is arranging the arguments so that your resulting matrix has its axes in the correct order.

    data_file_name =: '4.data'
    
    NB. cutopen yields boxed lines, so unbox them and ravel items to make a letter matrix
    grid =: ,. > cutopen fread data_file_name
    NB. pad the grid on every side with #'XMAS' - 1 spaces
    hpadded_grid =: (('   ' &amp; ,) @: (, &amp; '   '))"1 grid
    padded_grid =: (3 1 $ ' ') , hpadded_grid , (3 1 $ ' ')
    NB. traversal vectors
    directions =: 8 2 $ 1 0 1 1 0 1 _1 1 _1 0 _1 _1 0 _1 1 _1
    NB. rpos cpos matches rdir cdir if the string starting at rpos cpos in
    NB. direction rdir cdir is the string we want
    matches =: 4 : 0
    */ ,'XMAS' -: padded_grid {~ &lt;"1 x +"1 y *"1 0 i. 4
    )"1
    positions =: (3 + i. 0 { $ grid) ,"0/ (3 + i. 1 { $ grid)
    result1 =: +/, positions matches/ directions
    
    NB. pairs of traversal vectors
    x_directions =: 4 2 2 $ 1 1 _1 1 1 1 1 _1 _1 _1 _1 1 _1 _1 1 _1
    NB. rpos cpos x_matches 2 2 $ rdir1 cdir1 rdir2 cdir2 if there is an 'A' at
    NB. rpos cpos and the string in each of dir1 and dir2 centered at rpos cpos
    NB. is the string we want
    x_matches =: 4 : 0
    NB. (2 2 $ rdir1 cdir1 rdir2 cdir2) *"1 0/ (_1 + i.3) yields a matrix
    NB. 2 3 $ (_1 * dir1) , (0 * dir1) , (1 * dir1) followed by the same for dir2
    */ ,'MAS' -:"1 padded_grid {~ &lt;"1 x +"1 y *"1 0/ _1 + i. 3
    )"1 2
    result2 =: +/, positions x_matches/ x_directions
    
  • Andy@programming.dev
    link
    fedilink
    arrow-up
    3
    ·
    edit-2
    2 months ago

    Factor

    spoiler
    : get-input ( -- rows )
      "vocab:aoc-2024/04/input.txt" utf8 file-lines ;
    
    : verticals ( rows -- lines )
      [ dimension last [0..b) ] keep cols ;
    
    : slash-origins ( rows -- coords )
      dimension
      [ first [0..b) [ 0 2array ] map ] [
        first2 [ 1 - ] [ 1 (a..b] ] bi*
        [ 2array ] with map
      ] bi append ;
    
    : backslash-origins ( rows -- coords )
      dimension first2
      [ [0..b) [ 0 2array ] map ]
      [ 1 (a..b] [ 0 swap 2array ] map ] bi* append ;
    
    : slash ( rows origin -- line )
      first2
      [ 0 [a..b] ]
      [ pick dimension last [a..b) ] bi* zip
      swap matrix-nths ;
    
    : backslash ( rows origin -- line )
      [ dup dimension ] dip first2
      [ over first [a..b) ]
      [ pick last [a..b) ] bi* zip nip
      swap matrix-nths ;
    
    : slashes ( rows -- lines )
      dup slash-origins
      [ slash ] with map ;
    
    : backslashes ( rows -- lines )
      dup backslash-origins
      [ backslash ] with map ;
    
    : word-count ( line word -- n )
      dupd [ reverse ] dip
      '[ _ subseq-indices length ] bi@ + ;
    
    : part1 ( -- n )
      get-input
      { [ ] [ verticals ] [ slashes ] [ backslashes ] } cleave-array concat
      [ "XMAS" word-count ] map-sum ;
    
    : origin-adistances ( rows origins line-quot: ( rows origin -- line ) -- origin-adistances-assoc )
      with zip-with
      "MAS" "SAM" [ '[ [ _ subseq-indices ] map-values ] ] bi@ bi append
      harvest-values
      [ [ 1 + ] map ] map-values ; inline
    
    : a-coords ( origin-adistances coord-quot: ( adistance -- row-delta col-delta ) -- coords )
      '[ first2 [ @ 2array v+ ] with map ] map-concat ; inline
    
    : slash-a-coords ( rows -- coords )
      dup slash-origins [ slash ] origin-adistances
      [ [ 0 swap - ] keep ] a-coords ;
    
    : backslash-a-coords ( rows -- coords )
      dup backslash-origins [ backslash ] origin-adistances
      [ dup ] a-coords ;
    
    : part2 ( -- n )
      get-input [ slash-a-coords ] [ backslash-a-coords ] bi
      intersect length ;
    

    Better viewed on GitHub.

  • LeixB@lemmy.world
    link
    fedilink
    arrow-up
    3
    ·
    edit-2
    2 months ago

    Haskell

    import Control.Arrow
    import Data.Array.Unboxed
    import Data.List
    
    type Pos = (Int, Int)
    type Board = Array Pos Char
    data Dir = N | NE | E | SE | S | SW | W | NW
    
    target = "XMAS"
    
    parse s = listArray ((1, 1), (n, m)) [l !! i !! j | i <- [0 .. n - 1], j <- [0 .. m - 1]]
      where
        l = lines s
        (n, m) = (length $ head l, length l)
    
    move N = first pred
    move S = first succ
    move E = second pred
    move W = second succ
    move NW = move N . move W
    move SW = move S . move W
    move NE = move N . move E
    move SE = move S . move E
    
    check :: Board -> Pos -> Int -> Dir -> Bool
    check b p i d =
        i >= length target
            || ( inRange (bounds b) p
                    && (b ! p) == (target !! i)
                    && check b (move d p) (succ i) d
               )
    
    checkAllDirs :: Board -> Pos -> Int
    checkAllDirs b p = length . filter (check b p 0) $ [N, NE, E, SE, S, SW, W, NW]
    
    check2 :: Board -> Pos -> Bool
    check2 b p =
        all (inRange (bounds b)) moves && ((b ! p) == 'A') && ("SSMM" `elem` rotations)
      where
        rotations = rots $ (b !) <$> moves
        moves = flip move p <$> [NE, SE, SW, NW]
    
        rots xs = init $ zipWith (++) (tails xs) (inits xs)
    
    part1 b = sum $ checkAllDirs b <$> indices b
    part2 b = length . filter (check2 b) $ indices b
    
    main = getContents >>= print . (part1 &&& part2) . parse
    
  • Zarlin@lemmy.world
    link
    fedilink
    arrow-up
    2
    ·
    2 months ago

    Nim

    import ../aoc, strutils
    
    type
      Cell* = tuple[x,y:int]
    
    #the 8 grid direction
    const directions : array[8, Cell] = [
      (1, 0), (-1, 0),
      (0, 1), ( 0,-1),
      (1, 1), (-1,-1),
      (1,-1), (-1, 1)
    ]
    
    const xmas = "XMAS"
    
    #part 1
    proc searchXMAS*(grid:seq[string], x,y:int):int =
      #search in all 8 directions (provided we can find a full match in that direction)
      let w = grid[0].len
      let h = grid.len
      
      for dir in directions:
        # check if XMAS can even fit
        let xEnd = x + dir.x * 3
        let yEnd = y + dir.y * 3
        if xEnd < 0 or xEnd >= w or
           yEnd < 0 or yEnd >= h:
          continue;
        
        #step along direction
        var matches = 0
        for s in 0..3:
          if grid[y + dir.y * s][x + dir.x * s] == xmas[s]:
            inc matches
            
        if matches == xmas.len:
          inc result
    
    #part 2
    proc isMAS(grid:seq[string], c, o:Cell):bool=
      let ca : Cell = (c.x+o.x, c.y+o.y)
      let cb : Cell = (c.x-o.x, c.y-o.y)
      let a = grid[ca.y][ca.x]
      let b = grid[cb.y][cb.x]
      (a == 'M' and b == 'S') or (a == 'S' and b == 'M')
    
    proc searchCrossMAS*(grid:seq[string], x,y:int):bool =
      grid[y][x] == 'A' and
      grid.isMAS((x,y), (1,1)) and
      grid.isMAS((x,y), (1,-1))
    
    proc solve*(input:string): array[2,int] =
      let grid = input.splitLines
      let w = grid[0].len
      let h = grid.len
      
      #part 1
      for y in 0..<h:
        for x in 0..<w:
          result[0] += grid.searchXMAS(x, y)
      
      #part 2, skipping borders
      for y in 1..<h-1:
        for x in 1..<w-1:
          result[1] += (int)grid.searchCrossMAS(x, y)
    

    Part 1 was done really quickly. Part 2 as well, but the result was not accepted…

    Turns out +MAS isn’t actually a thing :P

  • hades@lemm.ee
    link
    fedilink
    arrow-up
    2
    ·
    2 months ago

    C#

    public class Day04 : Solver
    {
      private int width, height;
      private char[,] data;
    
      public void Presolve(string input) {
        var lines = input.Trim().Split("\n").ToList();
        height = lines.Count;
        width = lines[0].Length;
        data = new char[height, width];
        for (int i = 0; i < height; i++) {
          for (int j = 0; j < width; j++) {
            data[i, j] = lines[i][j];
          }
        }
      }
    
      private static readonly string word = "XMAS";
    
      public string SolveFirst()
      {
        int counter = 0;
        for (int start_i = 0; start_i < height; start_i++) {
          for (int start_j = 0; start_j < width; start_j++) {
            if (data[start_i, start_j] != word[0]) continue;
            for (int di = -1; di <= 1; di++) {
              for (int dj = -1; dj <= 1; dj++) {
                if (di == 0 && dj == 0) continue;
                int end_i = start_i + di * (word.Length - 1);
                int end_j = start_j + dj * (word.Length - 1);
                if (end_i < 0 || end_j < 0 || end_i >= height || end_j >= width) continue;
                for (int k = 1; k < word.Length; k++) {
                  if (data[start_i + di * k, start_j + dj * k] != word[k]) break;
                  if (k == word.Length - 1) counter++;
                }
              }
            }
          }
        }
        return counter.ToString();
      }
    
      public string SolveSecond()
      {
        int counter = 0;
        for (int start_i = 1; start_i < height - 1; start_i++) {
          for (int start_j = 1; start_j < width - 1; start_j++) {
            if (data[start_i, start_j] != 'A') continue;
            int even_mas_starts = 0;
            for (int di = -1; di <= 1; di++) {
              for (int dj = -1; dj <= 1; dj++) {
                if (di == 0 && dj == 0) continue;
                if ((di + dj) % 2 != 0) continue;
                if (data[start_i + di, start_j + dj] != 'M') continue;
                if (data[start_i - di, start_j - dj] != 'S') continue;
                even_mas_starts++;
              }
            }
            if (even_mas_starts == 2) counter++;
          }
        }
        return counter.ToString();
      }
    }
    
  • Sparrow_1029@programming.dev
    link
    fedilink
    English
    arrow-up
    2
    ·
    2 months ago

    Rust

    Ugh. Spent way too long on today’s. Should have just used my own grid structure from last year. I will likely refactor to use that. Even though it’s likely a super slow implementation, the convenience of dealing with it is better than shoehorning in the grid::Grid<T> from that crate.

    solution (no supporting code)
    use grid::Grid;
    
    use crate::shared::{
        grid2d::{iter_diag_nesw, iter_diag_nwse, Point},
        util::read_lines,
    };
    
    fn parse_grid(input: &[String]) -> Grid<u8> {
        let cols = input.first().unwrap().len();
        Grid::from_vec(
            input
                .iter()
                .flat_map(|row| row.chars().map(|c| c as u8).collect::<Vec<u8>>())
                .collect(),
            cols,
        )
    }
    
    fn part1(grid: &Grid<u8>) -> usize {
        let mut xmas_count = 0;
        let rows = grid
            .iter_rows()
            .map(|d| String::from_utf8(d.copied().collect()).unwrap());
        let cols = grid
            .iter_cols()
            .map(|d| String::from_utf8(d.copied().collect()).unwrap());
        for diag in iter_diag_nesw(grid)
            .chain(iter_diag_nwse(grid))
            .filter_map(|d| {
                if d.len() >= 4 {
                    Some(String::from_utf8(d.clone()).unwrap())
                } else {
                    None
                }
            })
            .chain(rows)
            .chain(cols)
        {
            xmas_count += diag.matches("XMAS").count() + diag.matches("SAMX").count()
        }
        xmas_count
    }
    
    fn part2(grid: &Grid<u8>) -> usize {
        let mut xmas_count = 0;
        let valid = [
            [b'M', b'M', b'S', b'S'],
            [b'M', b'S', b'S', b'M'],
            [b'S', b'M', b'M', b'S'],
            [b'S', b'S', b'M', b'M'],
        ];
        for x in 1..grid.cols() - 1 {
            for y in 1..grid.rows() - 1 {
                if grid.get(y, x) == Some(&b'A')
                    && valid.contains(
                        &(Point::new(x as isize, y as isize)
                            .diagonal_neighbors(grid)
                            .map(|i| i.unwrap_or(0))),
                    )
                {
                    xmas_count += 1;
                }
            }
        }
        xmas_count
    }
    
    pub fn solve() {
        let input = read_lines("inputs/day04.txt");
        let grid = parse_grid(&input);
        println!("Part 1: {}", part1(&grid));
        println!("Part 2: {}", part2(&grid));
    }
    

    And here’s a link to the Github if you care to see the gross supporting code :D

  • Deebster@programming.dev
    link
    fedilink
    arrow-up
    2
    ·
    edit-2
    2 months ago

    Rust

    I had a hunch about part two that didn’t pay off, so I over-coded this instead of just using an array of arrays.

    use std::{fs, str::FromStr};
    
    use color_eyre::eyre::{Report, Result};
    
    #[derive(Debug, Copy, Clone)]
    enum Direction {
        N,
        NE,
        E,
        SE,
        S,
        SW,
        W,
        NW,
    }
    
    impl Direction {
        fn all() -> &'static [Direction] {
            &[
                Direction::N,
                Direction::NE,
                Direction::E,
                Direction::SE,
                Direction::S,
                Direction::SW,
                Direction::W,
                Direction::NW,
            ]
        }
    }
    
    #[derive(Debug, PartialEq, Eq)]
    struct WordSearch {
        grid: Vec<char>,
        width: usize,
        height: usize,
    }
    
    impl FromStr for WordSearch {
        type Err = Report;
    
        fn from_str(s: &str) -> Result<Self, Self::Err> {
            let grid: Vec<_> = s.chars().filter(|&ch| ch != '\n').collect();
            let width = s
                .chars()
                .position(|ch| ch == '\n')
                .ok_or_else(|| Report::msg("grid width cannot be zero, or one line"))?;
            let height = grid.len() / width;
            Ok(Self {
                grid,
                width,
                height,
            })
        }
    }
    
    impl WordSearch {
        fn neighbour(&self, i: usize, dir: Direction) -> Option<usize> {
            let width = self.width;
            let length = self.grid.len();
            use Direction::*;
            match dir {
                N if i >= width => Some(i - width),
                NE if i >= width && i % width != width - 1 => Some(i - width + 1),
                E if i % width != width - 1 => Some(i + 1),
                SE if i + width + 1 < length && i % width != width - 1 => Some(i + width + 1),
                S if i + width < length => Some(i + width),
                SW if i + width - 1 < length && i % width != 0 => Some(i + width - 1),
                W if i % width != 0 => Some(i - 1),
                NW if i >= width && i % width != 0 => Some(i - width - 1),
                _ => None,
            }
        }
    
        fn word_count(&self, word: &str) -> Result<usize> {
            let mut found = 0;
            for i in 0..self.grid.len() {
                for dir in Direction::all() {
                    if self.word_present(word, i, *dir) {
                        found += 1;
                    }
                }
            }
            Ok(found)
        }
    
        fn x_count(&self) -> Result<usize> {
            let mut found = 0;
            for i in 0..self.grid.len() {
                if self.x_present(i) {
                    found += 1;
                }
            }
            Ok(found)
        }
    
        fn word_present(&self, word: &str, location: usize, dir: Direction) -> bool {
            let mut next = Some(location);
            for ch in word.chars() {
                let i = if let Some(i) = next {
                    i
                } else {
                    // Off the edge
                    return false;
                };
    
                if self.grid[i] != ch {
                    return false;
                }
                next = self.neighbour(i, dir);
            }
            true
        }
    
        fn x_present(&self, location: usize) -> bool {
            if self.grid.get(location) != Some(&'A') {
                return false;
            }
            let diags = [
                (Direction::NE, Direction::SW),
                (Direction::NW, Direction::SE),
            ];
            diags.iter().all(|(dir_a, dir_b)| {
                let Some(a_idx) = self.neighbour(location, *dir_a) else {
                    return false;
                };
                let Some(b_idx) = self.neighbour(location, *dir_b) else {
                    return false;
                };
                let a = self.grid[a_idx];
                let b = self.grid[b_idx];
                (a == 'M' && b == 'S') || (b == 'M' && a == 'S')
            })
        }
    }
    
    fn part1(filepath: &str) -> Result<usize> {
        let input = fs::read_to_string(filepath)?;
        let grid = WordSearch::from_str(&input)?;
        grid.word_count("XMAS")
    }
    
    fn part2(filepath: &str) -> Result<usize> {
        let input = fs::read_to_string(filepath)?;
        let grid = WordSearch::from_str(&input)?;
        grid.x_count()
    }
    
    fn main() -> Result<()> {
        color_eyre::install()?;
    
        println!("Part 1: {}", part1("d04/input.txt")?);
        println!("Part 2: {}", part2("d04/input.txt")?);
        Ok(())
    }
    
  • TunaCowboy@lemmy.world
    link
    fedilink
    arrow-up
    2
    ·
    edit-2
    2 months ago

    python

    solution
    import aoc
    
    def setup():
        return (aoc.get_lines(4, padded=(True, '.', 3)), 0)
    
    def one():
        lines, acc = setup()
        for row, l in enumerate(lines):
            for col, c in enumerate(l):
                if c == 'X':
                    w = l[col - 3:col + 1]
                    e = l[col:col + 4]
                    n = c + lines[row - 1][col] + \
                        lines[row - 2][col] + lines[row - 3][col]
                    s = c + lines[row + 1][col] + \
                        lines[row + 2][col] + lines[row + 3][col]
                    nw = c + lines[row - 1][col - 1] + \
                        lines[row - 2][col - 2] + lines[row - 3][col - 3]
                    ne = c + lines[row - 1][col + 1] + \
                        lines[row - 2][col + 2] + lines[row - 3][col + 3]
                    sw = c + lines[row + 1][col - 1] + \
                        lines[row + 2][col - 2] + lines[row + 3][col - 3]
                    se = c + lines[row + 1][col + 1] + \
                        lines[row + 2][col + 2] + lines[row + 3][col + 3]
                    for word in [w, e, n, s, nw, ne, sw, se]:
                        if word in ['XMAS', 'SAMX']:
                            acc += 1
        print(acc)
    
    def two():
        lines, acc = setup()
        for row, l in enumerate(lines):
            for col, c in enumerate(l):
                if c == 'A':
                    l = lines[row - 1][col - 1] + c + lines[row + 1][col + 1]
                    r = lines[row + 1][col - 1] + c + lines[row - 1][col + 1]
                    if l in ['MAS', 'SAM'] and r in ['MAS', 'SAM']:
                        acc += 1
        print(acc)
    
    one()
    two()
    
  • sjmulder@lemmy.sdf.org
    link
    fedilink
    arrow-up
    2
    ·
    2 months ago

    C

    What can I say, bunch of for loops! I add a 3 cell border to avoid having to do bounds checking in the inner loops.

    Code
    #include "common.h"
    #define GZ 146
    
    int main(int argc, char **argv) {
    	static char g[GZ][GZ];
    	static const char w[] = "XMAS";
    	int p1=0,p2=0, x,y, m,i;
    
    	if (argc > 1) DISCARD(freopen(argv[1], "r", stdin));
    	for (y=3; y<GZ && fgets(g[y]+3, GZ-3, stdin); y++) ;
    
    	for (y=3; y<GZ-3; y++)
    	for (x=3; x<GZ-3; x++) {
    		for (m=1,i=0; i<4; i++) {m &= g[y+i][x]==w[i];} p1+=m;
    		for (m=1,i=0; i<4; i++) {m &= g[y-i][x]==w[i];} p1+=m;
    		for (m=1,i=0; i<4; i++) {m &= g[y][x+i]==w[i];} p1+=m;
    		for (m=1,i=0; i<4; i++) {m &= g[y][x-i]==w[i];} p1+=m;
    		for (m=1,i=0; i<4; i++) {m &= g[y+i][x+i]==w[i];} p1+=m;
    		for (m=1,i=0; i<4; i++) {m &= g[y-i][x-i]==w[i];} p1+=m;
    		for (m=1,i=0; i<4; i++) {m &= g[y+i][x-i]==w[i];} p1+=m;
    		for (m=1,i=0; i<4; i++) {m &= g[y-i][x+i]==w[i];} p1+=m;
    
    		p2 += g[y+1][x+1]=='A' &&
    		      ((g[y][x]  =='M' && g[y+2][x+2]=='S')  ||
    		       (g[y][x]  =='S' && g[y+2][x+2]=='M')) &&
    		      ((g[y+2][x]=='M' && g[y][x+2]  =='S')  ||
    		       (g[y+2][x]=='S' && g[y][x+2]  =='M'));
    	}
    
    	printf("04: %d %d\n", p1, p2);
    }
    

    https://github.com/sjmulder/aoc/blob/master/2024/c/day04.c

  • Quant@programming.dev
    link
    fedilink
    arrow-up
    2
    ·
    2 months ago

    Uiua

    This one was nice. The second part seemed quite daunting at first but wasn’t actually that hard in the end.

    Run with example input here

    Row    ← ⌕ "XMAS"
    RevRow ← ⌕"SAMX"
    Sum    ← /+/+
    Count  ← +∩Sum⊃Row RevRow
    
    PartOne ← (
      &rs ∞ &fo "input-4.txt"
      ⊜∘≠@\n.
      ⊙+⟜∩Count⟜⍉ # horizontal and vertical search
      ⟜(/+⧈(Count⍉≡⬚@ ↻⇡⧻.)4)
      /+⧈(Count⍉≡⬚@ ↻¯⇡⧻.)4
      ++
    )
    
    Mask ← °⊚×2⇡5
    # Create variations of X-MAS
    Vars ← (
      ["M S"
       " A "
       "M S"]
      ≡♭[∩⟜⍉]≡⇌.
      Mask
      ⊏0⊞▽¤
    )
    
    PartTwo ← (
      &rs ∞ &fo "input-4.txt"
      ⊜∘≠@\n.
      ⧈(/+♭⊞≍⊙¤Vars▽Mask♭)3_3
      Sum
    )
    
    &p "Day 4:"
    &pf "Part 1: "
    &p PartOne
    &pf "Part 2: "
    &p PartTwo
    
  • Hammerheart@programming.dev
    link
    fedilink
    arrow-up
    1
    ·
    edit-2
    1 month ago

    Part 1:

    with open('input') as data:
        lines = [l.strip() for l in data.readlines()]
    # Remove empty line
    class Result():
        def __init__(self):
            self.count = 0
    
    
    def analyze_lines(lines: list[str]):
        ans.count += get_rights(lines)
        ans.count += get_ups(lines)
        ans.count += get_downs(lines)
        ans.count += get_down_rights(lines)
        ans.count += get_down_lefts(lines)
        ans.count += get_up_lefts(lines)
        ans.count += get_up_rights(lines)
        for line in lines:
            ans.count += get_lefts(line)
    
    
    
    
    def get_ups(lines: list[str]) -> int:
        up_count = 0
        for i_l, line in enumerate(lines):
            result = ""
            if i_l < 3:
                continue
            for i_c, char in enumerate(line):
                if char == "X":
                    result = char
                    result += "".join([lines[i_l - n][i_c] for n in range(1, 4)])
                    if result == "XMAS":
                        up_count += 1
                    else:
                        result = ""
        return up_count
    
    
    def get_downs(lines: list[str]) -> int:
        down_count = 0
        for i_l, l in enumerate(lines):
            result = ""
            for i_c, c in enumerate(l):
                if c == "X":
                    result += c
                    try:
                        result += "".join([lines[i_l + n][i_c] for n in range(1, 4)])
                    except IndexError:
                        result = ""
                        continue
                    finally:
                        if result == "XMAS":
                            down_count += 1
                        result = ""
        return down_count
    
    
            
    def get_lefts(line: str) -> int:
        left_count = 0
        for i, char in enumerate(line):
            if i < 3:
                continue
            elif char == "X" and line[i-1] == "M" and line[i-2] == "A" and line[i-3] == "S":
                left_count += 1
        return left_count
    
    
    def get_rights(lines: list[str]) -> int:
        right_counts = 0
        for l in lines:
            right_counts += l.count("XMAS")
        return right_counts
    
    def get_down_rights(lines: list[str]) -> int:
        down_right_count = 0
        for i_l, l in enumerate(lines):
            result = ""
            for i_c, c in enumerate(l):
                if c == "X":
                    result += c
                    try:
                        result += "".join(
                                [lines[i_l + n][i_c + n] for n in range(1,4)]
                                )
                    except IndexError:
                        result = ""
                        continue
                    finally:
                        if result == "XMAS":
                            down_right_count += 1
                        result = ""
        return down_right_count
    
    def get_down_lefts(lines: list[str]) -> int:
        down_left_count = 0
        for i_l, l in enumerate(lines):
            result = ""
            for i_c, c in enumerate(l):
                if i_c < 3:
                    continue
                if c == "X":
                    result += c
                    try:
                        result += "".join(
                                [lines[i_l + n][i_c - n] for n in range(1,4)]
                                )
                    except IndexError:
                        result = ""
                        continue
                    finally:
                        if result == "XMAS":
                            down_left_count += 1
                        result = ""
        return down_left_count
    
    def get_up_rights(lines: list[str]) -> int:
        up_right_count = 0
        for i_l, l in enumerate(lines):
            result = ""
            if i_l < 3:
                continue
            for i_c, c in enumerate(l):
                if c == "X":
                    result += c
                    try:
                        result += "".join(
                                [lines[i_l - n][i_c + n] for n in range(1,4)]
                                )
                    except IndexError:
                        result = ""
                        continue
                    finally:
                        if result == "XMAS":
                            up_right_count += 1
                        result = ""
        return up_right_count
    
    
    def get_up_lefts(lines: list[str]) -> int:
        up_left_count = 0
        for i_l, l in enumerate(lines):
            result = ""
            if i_l < 3:
                continue
            for i_c, c in enumerate(l):
                if i_c < 3:
                    continue
                if c == "X":
                    result = c
                    try:
                        result += "".join(
                                [lines[i_l - n][i_c - n] for n in range(1,4)]
                                )
                    except IndexError as e:
                        result = ""
                        continue
                    finally:
                        if result == "XMAS":
                            up_left_count += 1
                        result = ""
        return up_left_count
    
    ans = Result()
    analyze_lines(lines)
    print(ans.count)
    

    Part 2:

    with open('input') as data:
        lines = list(filter(lambda x: x != '', [l.strip() for l in data.readlines()]))
        
    xmases = 0
    for i in range(1, len(lines)):
        for j in range(1, len(lines[i])):
            if lines[i][j] == "A":
                try:
                    up_back = lines[i-1][j-1]
                    down_over = lines[i+1][j+1]
                    up_over = lines[i-1][j+1]
                    down_back = lines[i+1][j-1]
                except IndexError:
                    continue
                else:
                    if {up_back, down_over} == set("MS") and {up_over, down_back} == set("MS"):
                        xmases += 1
    
    print(xmases)
    

    I actually found part two A LOT easier than part 1.